Logo de Beunicoos

Valeria

Una esfera maciza no conductora de 11,4 cm de radio está uniformemente cargada con densidad volumétrica de carga de valor 31 nC/m3. ¿Cuánto vale la magnitud del campo eléctrico a 13,4 cm del centro de la esfera?

Respuestas (3)

Vamos con una orientación.

Observa que el punto en estudio se encuentra fuera de la esfera m0aciza, por lo que aplicas la Ley de Gauss (observa que consideramos una superficie gaussiana esférica y concéntrica con la esfera maciza), y queda la ecuación:

|E|*Ar = qne0 (1),

a continuación planteas la expresión del área de la supeficie gaussiana, y queda:

Ar = 4π*r2 (2),

a continuación planteas la expresión de la carga eléctrica neta encerrada por la superficie gaussiana (observa que su radio es mayor que el radio de la esfera maciza ya que el punto en estudio es exterior a la misma, por lo que queda encerrada la totalidad de la carga eléctrica), y queda:

qne = β*(4π/3)*R3 (3),

y queda para ti sustituir las expresiones señaladas (2) (3) en la ecuación señalada (1), para después despejar la expresión del módulo del campo eléctrico en el punto en estudio, reemplazar datos expresados en unidades internacionales, y hacer el cálculo.

Espero haberte ayudado.

Buenos dias Profe Antonio... Muchas gracias por su ayuda, creo que logre hacer el ejercicio de forma correcta. Sin embargo, me gustaria que lo revise. Pues pase las unidades a los valores correspondientes pero no se si esta correcto, entonces a continuacion le muestro como me quedo el ejercicio:

E (4π * r^2) = (β ( (4/3) * π * R^3 )) / ε0 

E = (β ( (4/3) * π * R^3 )) / (ε0 * (4π * r^2)) 

E = ((31*10^-9) ( (4/3) * π * (11.4*10^-2)^3 )) / ((8,85*10^-12) * (4π * (13,4*10^-2)^2))  

E = 8,85*10^-22  

El resultado estara correcto? Es que da un numero muy extraño. Me gustaria saber si puede revisar si lo estoy haciendo bien.

Vamos con una orientación, fin de facilitar el cálculo.

Tienes tu primera ecuación:

E*4π*r2 = β*(4π/3)*R30,

aquí observa que puedes dividir por 4π en ambos miembros, simplificas, y queda:

E*r2 = β*(1/3)*R30, 

ahora dividesr por r2 en ambos miembros, asocias factores y divisores, y queda:

E = β*R3/(3*ε0*r2),

y ahora observa que esta última expresión es mucho más sencilla a la hora de reemplazar datos y hacer el cálculo:

E = 31*10-9*(11,4*10-2)3/(3*8,85*10-12*[13,4*10-2]2) ≅ 96,339 N/C.

Espero haberte ayudado.